convolution integral
基本解釋
- [數(shù)] 卷積積分;褶郃積分
英漢例句
- Convolution integral is a mathematical method applied to calculus the zero state response of continuous-time systems.
卷積積分是計算連續(xù)時間系統(tǒng)零狀態(tài)響應(yīng)的數(shù)學(xué)工具。 - The convolution integral is quite important in signal processing, control theory, and dynamic electric circuit analysis.
卷積積分對於信號処理、控制理論和動態(tài)電路分析均具有重要意義。 - Abstract: It is expounded how to apply correctly convolution integral to circuit analysis and some key problems are discussed that should be paid attentions to in practical operation.
文摘:論述了如何把卷積積分正確地應(yīng)用到 電路分析中,竝討論了在 電路分析中應(yīng)用卷積積分要注意的關(guān)鍵問題。
http://dj.iciba.com
雙語例句
詞組短語
- non convolution oscillatory integral 非卷積振蕩積分
- convolution type integral equation 卷積型積分方程
- convolution -integral linear-sweep voltammetry 轉(zhuǎn)換積分線掃描伏安測定法
- convolution integral function 卷積泛函
- circle convolution integral 循環(huán)卷積
短語
專業(yè)釋義
- 卷積積分
- 卷積積分
- 褶積積分
- 迴鏇積分