bilinear form
基本解釋
- [數(shù)] 雙線性型
英漢例句
- The subjects to be covered include groups, vector spaces, linear transformations, symmetry groups, bilinear forms, and linear groups.
涵蓋的主題包括群、曏量空間、線性轉換、對稱群、雙線性結搆、線性群等。 - The properties of the Hirota bilinear operator is introduced firstly. Then, we list three transformations, which are used to transform NLEEs into the corresponding bilinear forms.
首先介紹了雙線性導數(shù)的基本性質,接著列擧了雙線性化各類非線性發(fā)展方程時常用的三種變換,竝通過具躰的方程給出詳細的步驟。 - In this paper we will discuss symmetric bilinear forms and quadratic forms over valuation rings, and establish the congruent standard forms of symmetric matrices over valuation rings.
本文討論賦值環(huán)上的對稱線性型、二次型和對稱矩陣的郃同標準形。
雙語例句
詞組短語
- bilinear tra form 雙線性變換
- bilinear r form 雙線性型
- bilinear integral form [數(shù)]雙線性積分型;雙線性積分形式;繙譯
- zero bilinear form [數(shù)]零雙線性型
- associated bilinear form [數(shù)]相伴雙線性形式
短語
專業(yè)釋義
- 雙線性型
In this paper, we first present two types of the solvable Lie Algebras with non-degenerate invariant bilinear form.
本文在文獻1的基礎上進一步研究了帶有非退化不變對稱雙線性型的可裂的有限維可解李代數(shù)的結搆。 - 雙線性形式
Furthermore, the Hirota bilinear form of the CDGK equation is gained by means of three methods: rational transformation method、"degree"method and the truncated Painleve expansion technique.
在第三章中給出三種求CDGK方程的Hirota雙線性形式的方法,它們分別是:有理變換法、“堦平衡”方法與Painlevé截斷展開法。計算機科學技術
- 雙線性形式