weak fixed point property
基本解釋
- [數(shù)學(xué)]弱不動點性質(zhì)
專業(yè)釋義
- 弱不動點性質(zhì)
Using geometric properties to deal with the fixed point property of nonexpansive mapping in Banach spaces have being highly develpmented since Kirk proved that a Banach space with normal structure have weak fixed point property in 1965.
自從1965年,W. A. Kirk證明具有正規(guī)結(jié)構(gòu)的Banach空間具有弱不動點性質(zhì)10以來,利用Banach空間的空間性質(zhì)研究非擴張映射的不動點性質(zhì)得到了迅速的發(fā)展。