irreducible polynomial
基本解釋
- [數(shù)] 不可約的多項(xiàng)式
- [數(shù)] 不可約多項(xiàng)式
英漢例句
- A polynomial is said to be irreducible if it cannot be factored into nontrivial polynomials over the same field.
多項(xiàng)式(在某個(gè)域中)被稱為不可約的,如果它在該域中不能分解為非平凡的多項(xiàng)式因子。 - It is the main result of this paper that any polynomial over a principal domain R which contains at least two prime elements, can be always written as the sum of two irreducible polynomials over R.
本文的主要結(jié)果是:至少有兩個(gè)素元的主理想整環(huán)R上的任何多項(xiàng)式總可以寫成R上兩個(gè)不可約多項(xiàng)式之和。
雙語(yǔ)例句
詞組短語(yǔ)
- irreducible homogeneous polynomial 不可約齊次多項(xiàng)式
- irreducible polynomial representation 不可約多項(xiàng)式表示
- basic irreducible polynomial 基本不可約多項(xiàng)式
- irreducible algebraic equation polynomial 不可約多項(xiàng)式
- irreducible algebraic equation polynomial representation 不可約多項(xiàng)式表示
短語(yǔ)
專業(yè)釋義
- 不可約多項(xiàng)式
- 不可分解多項(xiàng)式
- 不可約多項(xiàng)式
- 不可分解多項(xiàng)式
- 不可約多項(xiàng)式